Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6028, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472358

ABSTRACT

Understanding the genetic structure of populations and the processes responsible for its spatial and temporal dynamics is vital for assessing species' adaptability and survival in changing environments. We investigate the genetic fingerprinting of blooming populations of the marine diatom Pseudo-nitzschia multistriata in the Gulf of Naples (Mediterranean Sea) from 2008 to 2020. Strains were genotyped using microsatellite fingerprinting and natural samples were also analysed with Microsatellite Pool-seq Barcoding based on Illumina sequencing of microsatellite loci. Both approaches revealed a clonal expansion event in 2013 and a more stable genetic structure during 2017-2020 compared to previous years. The identification of a mating type (MT) determination gene allowed to assign MT to strains isolated over the years. MTs were generally at equilibrium with two notable exceptions, including the clonal bloom of 2013. The populations exhibited linkage equilibrium in most blooms, indicating that sexual reproduction leads to genetic homogenization. Our findings show that P. multistriata blooms exhibit a dynamic genetic and demographic composition over time, most probably determined by deeper-layer cell inocula. Occasional clonal expansions and MT imbalances can potentially affect the persistence and ecological success of planktonic diatoms.


Subject(s)
Diatoms , Diatoms/genetics , Plankton/genetics , Reproduction/genetics , Cell Communication , Genetic Structures
2.
Harmful Algae ; 130: 102520, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38061816

ABSTRACT

To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.


Subject(s)
Diatoms , Diatoms/chemistry , Plankton , Oceans and Seas , DNA, Ribosomal , Chile
3.
Protist ; 174(4): 125965, 2023 08.
Article in English | MEDLINE | ID: mdl-37327684

ABSTRACT

Oceanic phytoplankton serve as a base for the food webs within the largest planetary ecosystem. Despite this, surprisingly little is known about species composition, function and ecology of phytoplankton communities, especially for vast areas of the open ocean. In this study we focus on the marine phytoplankton microflora from the vicinity of the Marquesas Islands in the Southern Pacific Ocean collected during the Tara Oceans expedition. Multiple samples from four sites and two depths were studied in detail using light microscopy, scanning electron microscopy, and automated confocal laser scanning microscopy. In total 289 taxa were identified, with Dinophyceae and Bacillariophyceae contributing 60% and 32% of taxa, respectively, to phytoplankton community composition. Notwithstanding, a large number of cells could not be assigned to any known species. Coccolithophores and other flagellates together contributed less than 8% to the species list. Observed cell densities were generally low, but at sites of high autotrophic biomass, diatoms reached the highest cell densities (1.26 × 104 cells L-1). Overall, 18S rRNA metabarcode-based community compositions matched microscopy-based estimates, particularly for the main diatom taxa, indicating consistency and complementarity between different methods, while the wide range of microscopy-based methods permitted several unknown and poorly studied taxa to be revealed and identified.


Subject(s)
Diatoms , Dinoflagellida , Phytoplankton/genetics , Ecosystem , Islands , Oceans and Seas , Diatoms/genetics , Microscopy, Electron, Scanning
4.
Ecol Evol ; 12(8): e9155, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35949533

ABSTRACT

The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long-term time series and propose Pseudo-nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long-term plankton time series show P. allochrona invariably occurring in summer-autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter-spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco-evolutionary dynamics of marine microorganisms.

5.
Sci Rep ; 12(1): 3908, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273208

ABSTRACT

Phytoplankton play a pivotal role in global biogeochemical and trophic processes and provide essential ecosystem services. However, there is still no broad consensus on how and to what extent their community composition responds to environmental variability. Here, high-frequency oceanographic and biological data collected over more than 25 years in a coastal Mediterranean site are used to shed light on the temporal patterns of phytoplankton species and assemblages in their environmental context. Because of the proximity to the coast and due to large-scale variations, environmental conditions showed variability on the short and long-term scales. Nonetheless, an impressive regularity characterised the annual occurrence of phytoplankton species and their assemblages, which translated into their remarkable stability over decades. Photoperiod was the dominant factor related to community turnover and replacement, which points at a possible endogenous regulation of biological processes associated with species-specific phenological patterns, in analogy with terrestrial plants. These results highlight the considerable stability and resistance of phytoplankton communities in response to different environmental pressures, which contrast the view of these organisms as passively undergoing changes that occur at different temporal scales in their habitat, and show how, under certain conditions, biological processes may prevail over environmental forcing.


Subject(s)
Ecosystem , Phytoplankton , Environment , Photoperiod , Phytoplankton/physiology , Seasons
6.
Biology (Basel) ; 10(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919887

ABSTRACT

Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV-visible spectrophotometry and Raman spectrometry. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved.

7.
ISME J ; 15(7): 1931-1942, 2021 07.
Article in English | MEDLINE | ID: mdl-33589768

ABSTRACT

Marine protists have traditionally been assumed to be lowly diverse and cosmopolitan. Yet, several recent studies have shown that many protist species actually consist of cryptic complexes of species whose members are often restricted to particular biogeographic regions. Nonetheless, detection of cryptic species is usually hampered by sampling coverage and application of methods (e.g. phylogenetic trees) that are not well suited to identify relatively recent divergence and ongoing gene flow. In this paper, we show how these issues can be overcome by inferring phylogenetic haplotype networks from global metabarcoding datasets. We use the Chaetoceros curvisetus (Bacillariophyta) species complex as study case. Using two complementary metabarcoding datasets (Ocean Sampling Day and Tara Oceans), we equally resolve the cryptic complex in terms of number of inferred species. We detect new hypothetical species in both datasets. Gene flow between most of species is absent, but no barcoding gap exists. Some species have restricted distribution patterns whereas others are widely distributed. Closely related taxa occupy contrasting biogeographic regions, suggesting that geographic and ecological differentiation drive speciation. In conclusion, we show the potential of the analysis of metabarcoding data with evolutionary approaches for systematic and phylogeographic studies of marine protists.


Subject(s)
DNA Barcoding, Taxonomic , Eukaryota , Haplotypes , Oceans and Seas , Phylogeny
8.
Sci Rep ; 11(1): 807, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33437054

ABSTRACT

Concerted evolution is a process of homogenisation of repetitive sequences within a genome through unequal crossing over and gene conversion. This homogenisation is never fully achieved because mutations always create new variants. Classically, concerted evolution has been detected as "noise" in electropherograms and these variants have been characterised through cloning and sequencing of subsamples of amplified products. However, this approach limits the number of detectable variants and provides no information about the abundance of each variant. In this study, we investigated concerted evolution by using environmental time-series metabarcoding data, single strain high-throughput sequencing (HTS) and a collection of Sanger reference barcode sequences. We used six species of the marine planktonic diatom genus Chaetoceros as study system. Abundance plots obtained from environmental metabarcoding and single strain HTS showed the presence of a haplotype far more abundant than all the others (the "dominant" haplotype) and identical to the reference sequences of that species obtained with Sanger sequencing. This distribution fitted best with Zipf's law among the rank abundance/ dominance models tested. Furthermore, in each strain 99% of reads showed a similarity of 99% with the dominant haplotype, confirming the efficiency of the homogenisation mechanism of concerted evolution. We also demonstrated that minor haplotypes found in the environmental samples are not only technical artefacts, but mostly intragenomic variation generated by incomplete homogenisation. Finally, we showed that concerted evolution can be visualised inferring phylogenetic networks from environmental data. In conclusion, our study provides an important contribution to the understanding of concerted evolution and to the interpretation of DNA barcoding and metabarcoding data based on multigene family markers.


Subject(s)
DNA, Ribosomal/genetics , Diatoms/genetics , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Phylogeny
9.
BMC Genomics ; 21(1): 693, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023465

ABSTRACT

BACKGROUND: Copepods are fundamental components of pelagic food webs, but reports on how molecular responses link to reproductive success in natural populations are still scarce. We present a de novo transcriptome assembly and differential expression (DE) analysis in Temora stylifera females collected in the Gulf of Naples, Mediterranean Sea, where this copepod dominates the zooplankton community. High-Throughput RNA-Sequencing and DE analysis were performed from adult females collected on consecutive weeks (May 23rd and 30th 2017), because opposite naupliar survival rates were observed. We aimed at detecting key genes that may have influenced copepod reproductive potential in natural populations and whose expression was potentially affected by phytoplankton-derived oxylipins, lipoxygenase-derived products strongly impacting copepod naupliar survival. RESULTS: On the two sampling dates, temperature, salinity, pH and oxygen remained stable, while variations in phytoplankton cell concentration, oxylipin concentration and oxylipin-per-diatom-cell production were observed. T. stylifera naupliar survival was 25% on May 23rd and 93% on May 30th. De novo assembly generated 268,665 transcripts (isoforms) and 120,749 unique 'Trinity predicted genes' (unigenes), of which 50% were functionally annotated. Out of the 331 transcript isoforms differentially expressed between the two sampling dates, 119 sequences were functionally annotated (58 up- and 61 down-regulated). Among predicted genes (unigenes), 144 sequences were differentially expressed and 31 (6 up-regulated and 25 down-regulated) were functionally annotated. Most of the significantly down-regulated unigenes and isoforms were A5 Putative Odorant Binding Protein (Obp). Other differentially expressed sequences (isoforms and unigenes) related to developmental metabolic processes, protein ubiquitination, response to stress, oxidation-reduction reactions and hydrolase activities. DE analysis was validated through Real Time-quantitative PCR of 9 unigenes and 3 isoforms. CONCLUSIONS: Differential expression of sequences involved in signal detection and transduction, cell differentiation and development offered a functional interpretation to the maternally-mediated low naupliar survival rates observed in samples collected on May 23rd. Down-regulation of A5 Obp along with higher quantities of oxylipins-per-litre and oxylipins-per-diatom-cell observed on May 23rd could suggest oxylipin-mediated impairment of naupliar survival in natural populations of T. stylifera. Our results may help identify biomarker genes explaining variations in copepod reproductive responses at a molecular level.


Subject(s)
Biomass , Copepoda/genetics , Transcriptome , Animals , Copepoda/metabolism , Copepoda/physiology , Diet , Female , Oxylipins/metabolism , Phytoplankton/growth & development , Reproduction
10.
Mar Environ Res ; 160: 104980, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32907718

ABSTRACT

While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.


Subject(s)
Bays , Phytoplankton , Plankton , Biomass , Mediterranean Sea
11.
ISME J ; 14(8): 1966-1981, 2020 08.
Article in English | MEDLINE | ID: mdl-32350410

ABSTRACT

In the ocean, Bacillariophyta are one of the most successful protistan groups. Due to their considerable biogeochemical implications, diatom diversity, development, and seasonality have been at the center of research, specifically large-sized species. In comparison, nanoplanktonic diatoms are mostly disregarded from routine monitoring and are often underrepresented in genetic reference databases. Here, we identified and investigated the temporal dynamics of relevant nanodiatoms occurring in the Western English Channel (SOMLIT-Astan station). Coupling in situ and laboratory approaches, we revealed that nano-species from the genera Minidiscus and Thalassiosira are key components of the phytoplankton community that thrive in these coastal waters, but they display different seasonal patterns. Some species formed recurrent blooms whilst others were persistent year round. These results raise questions about their regulation in the natural environment. Over a full seasonal cycle at the monitoring station, we succeeded in isolating viruses which infect these minute diatoms, suggesting that these mortality agents may contribute to their control. Overall, our study points out the importance of considering nanodiatom communities within time-series surveys to further understand their role and fate in marine systems.


Subject(s)
Diatoms , Ecosystem , Phytoplankton , Seasons
12.
Environ Microbiol ; 22(5): 1917-1929, 2020 05.
Article in English | MEDLINE | ID: mdl-32157787

ABSTRACT

High-throughput sequencing (HTS) metabarcoding is commonly applied to assess phytoplankton diversity. Usually, haplotypes are grouped into operational taxonomic units (OTUs) through clustering, whereby the resulting number of OTUs depends on chosen similarity thresholds. We applied, instead, a phylogenetic approach to infer taxa among 18S rDNA V4-metabarcode haplotypes gathered from 48 time-series samples using the marine planktonic diatoms Chaetoceros and Bacteriastrum as test case. The 73 recovered taxa comprised both solitary haplotypes and polytomies, the latter composed each of a highly abundant, dominant haplotype and one to several minor, peripheral haplotypes. The solitary and dominant haplotypes usually matched reference sequences, enabling species assignation of taxa. We hypothesise that the super-abundance of reads in dominant haplotypes results from the homogenization effect of concerted evolution. Reads of populous peripheral haplotypes and dominant haplotypes show comparable distribution patterns over the sample dates, suggesting that they are part of the same population. Many taxa revealed marked seasonality, with closely related ones generally showing distinct periodicity, whereas others occur year-round. Phylogenies inferred from metabarcode haplotypes enable delineation of biologically meaningful taxa, whereas OTUs resulting from clustering algorithms often deviate markedly from such taxa.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic/methods , Diatoms/classification , Diatoms/genetics , DNA, Ribosomal/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Phytoplankton/genetics , Phytoplankton/physiology , RNA, Ribosomal, 18S/genetics
13.
ISME J ; 14(1): 164-177, 2020 01.
Article in English | MEDLINE | ID: mdl-31611654

ABSTRACT

Oxylipins are important signal transduction lipoxygenase-derived products of fatty acids that regulate a variety of physiological and pathological processes in plants and animals. In marine diatoms, these molecules can be highly bioactive, impacting zooplankton grazers, bacteria and other phytoplankton. However, the ultimate cause for oxylipin production in diatoms is still poorly understood, from an evolutionary perspective. Here we analysed production of particulate linear oxygenated fatty acids (LOFAs, previously named non-volatile oxylipins) from natural phytoplankton collected weekly for 1 year. We demonstrate for the first time that diatoms are the main LOFA producers in natural phytoplankton assemblages. Interestingly, LOFA-per-cell production decreased with increasing diatom density and was not due to major changes in diatom community composition. An inverse relation was confirmed at a global scale by analysing diatom lipoxygenase unigenes and metagenomes from Tara Oceans datasets. A network analysis suggested that different LOFAs could contribute to modulate co-variations of different diatom taxa. Overall, we offer new insights in diatom chemical ecology, possibly explaining the evolution of oxylipin synthesis in diatoms.


Subject(s)
Diatoms/metabolism , Oxylipins/metabolism , Animals , Diatoms/genetics , Phytoplankton/metabolism
14.
PeerJ ; 7: e7410, 2019.
Article in English | MEDLINE | ID: mdl-31489261

ABSTRACT

Information on taxa distribution is a prerequisite for many research fields, and biological records are a major source of data contributing to biogeographic studies. The Global Biodiversity Information Facility (GBIF) and the Ocean Biogeographic Information System (OBIS) are important infrastructures facilitating free and open access to classical biological data from several sources in both temporal and spatial scales. Over the last ten years, high throughput sequencing (HTS) metabarcoding data have become available, which constitute a great source of detailed occurrence data. Among the global sampling projects that have contributed to such data are Tara Oceans and the Ocean Sampling Day (OSD). Integration of classical and metabarcoding data may aid a more comprehensive assessment of the geographic range of species, especially of microscopic ones such as protists. Rare, small and cryptic species are often ignored in surveys or mis-assigned with the classical approaches. Here we show how integration of data from various sources can contribute to insight in the biogeography and diversity at the genus- and species-level using Chaetoceros as study system, one of the most diverse and abundant genera among marine planktonic diatoms. Chaetoceros records were extracted from GBIF and OBIS and literature data were collected by means of a Google Scholar search. Chaetoceros references barcodes where mapped against the metabarcode datasets of Tara Oceans (210 sites) and OSD (144 sites). We compared the resolution of different data sources in determining the global distribution of the genus and provided examples, at the species level, of detection of cryptic species, endemism and cosmopolitan or restricted distributions. Our results highlighted at genus level a comparable picture from the different sources but a more complete assessment when data were integrated. Both the importance of the integration but also the challenges related to it were illustrated. Chaetoceros data collected in this study are organised and available in the form of tables and maps, providing a powerful tool and a baseline for further research in e.g., ecology, conservation and evolutionary biology.

15.
Mol Phylogenet Evol ; 140: 106575, 2019 11.
Article in English | MEDLINE | ID: mdl-31362084

ABSTRACT

The diatom family Chaetocerotaceae (Bacillariophyta) is common in the marine plankton worldwide, especially in coastal areas and upwelling zones. Its defining character constitutes hollow processes, called setae, which emerge from the valves of the vegetative cells. The family comprises two extant genera: Bacteriastrum and Chaetoceros. Current systematics is based on morphological features of vegetative cells and resting spores and is summarised in a classification scheme subdividing Bacteriastrum in two sections, Isomorpha and Sagittata, and Chaetoceros in three subgenera: Hyalochaete, Chaetoceros (Phaeoceros) and Bacteriastroidea, and further into 22 sections. Phylogenies inferred from single molecular markers (18S and partial 28S rDNA) show only partial topological agreement and many poorly or unresolved basal ramifications. Since classification should not only satisfy practical needs but also reflect well-supported evolutionary relationships of the taxa under investigation, we inferred a multigene phylogeny of the family Chaetocerotaceae amplifying five genes of 100 strains encompassing six Bacteriastrum and 60 Chaetoceros species. We also compared the phylogenetic signal of nuclear, plastid and mitochondrial compartments to ascertain if the inferred tree topologies were congruent. Our results provided a robust multigene phylogeny of the family Chaetocerotaceae, offering a solid framework to test the validity of the traditional taxonomical classification. The genera Bacteriastrum and Chaetoceros were resolved as sister clades, whilst the subgenus Hyalochaete was found to be paraphyletic. Consequently, we rejected the subdivision in subgenera and only considered sections. Most of the already recognised sections were found to be monophyletic. We emended one section, rejected seven and erected three new ones. As a consequence of our proposed changes, all the sections investigated are supported by morphological and molecular characters alike. Thus, a natural classification is feasible for this important and very diverse marine planktonic family.


Subject(s)
Diatoms/classification , Phylogeny , Animals , DNA, Ribosomal/genetics , Diatoms/genetics , Likelihood Functions , Species Specificity
16.
Sci Rep ; 8(1): 18059, 2018 12 24.
Article in English | MEDLINE | ID: mdl-30584235

ABSTRACT

Diatoms constitute a diverse lineage of unicellular organisms abundant and ecologically important in aquatic ecosystems. Compared to other protists, their biology and taxonomy are well-studied, offering the opportunity to combine traditional approaches and new technologies. We examined a dataset of diatom 18S rRNA- and rDNA- (V4 region) reads from different plankton size-fractions and sediments from six European coastal marine sites, with the aim of identifying peculiarities and commonalities with respect to the whole protistan community. Almost all metabarcodes (99.6%) were assigned to known genera (121) and species (236), the most abundant of which were those already known from classic studies and coincided with those seen in light microscopy. rDNA and rRNA showed comparable patterns for the dominant taxa, but rRNA revealed a much higher diversity particularly in the sediment communities. Peculiar to diatoms is a tight bentho-pelagic coupling, with many benthic or planktonic species colonizing both water column and sediments and the dominance of planktonic species in both habitats. Overall metabarcoding results reflected the marked specificity of diatoms compared to other protistan groups in terms of morphological and ecological characteristics, at the same time confirming their great potential in the description of protist communities.


Subject(s)
Biodiversity , DNA, Protozoan/genetics , Diatoms/genetics , DNA Barcoding, Taxonomic , DNA, Protozoan/chemistry , Diatoms/classification , Metagenome , Oceans and Seas , Phylogeny , RNA, Ribosomal/genetics
17.
PLoS One ; 13(12): e0208929, 2018.
Article in English | MEDLINE | ID: mdl-30586452

ABSTRACT

The species-rich diatom family Chaetocerotaceae is common in the coastal marine phytoplankton worldwide where it is responsible for a substantial part of the primary production. Despite its relevance for the global cycling of carbon and silica, many species are still described only morphologically, and numerous specimens do not fit any described taxa. Nowadays, studies to assess plankton biodiversity deploy high throughput sequencing metabarcoding of the 18S rDNA V4 region, but to translate the gathered metabarcodes into biologically meaningful taxa, there is a need for reference barcodes. However, 18S reference barcodes for this important family are still relatively scarce. We provide 18S rDNA and partial 28S rDNA reference sequences of 443 morphologically characterized chaetocerotacean strains. We gathered 164 of the 216 18S sequences and 244 of the 413 28S sequences of strains from the Gulf of Naples, Atlantic France, and Chile. Inferred phylogenies showed 84 terminal taxa in seven principal clades. Two of these clades included terminal taxa whose rDNA sequences contained spliceosomal and Group IC1 introns. Regarding the commonly used metabarcode markers in planktonic diversity studies, all terminal taxa can be discriminated with the 18S V4 hypervariable region; its primers fit their targets in all but two species, and the V4-tree topology is similar to that of the 18S. Hence V4-metabarcodes of unknown Chaetocerotaceae are assignable to the family. Regarding the V9 hypervariable region, most terminal taxa can be discriminated, but several contain introns in their primer targets. Moreover, poor phylogenetic resolution of the V9 region affects placement of metabarcodes of putative but unknown chaetocerotacean taxa, and hence, uncertainty in taxonomic assignment, even of higher taxa.


Subject(s)
Diatoms/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Biodiversity , DNA Barcoding, Taxonomic , DNA, Ribosomal/genetics , Diatoms/classification , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Plankton/classification , Plankton/genetics
18.
Mol Ecol Resour ; 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29603631

ABSTRACT

Dinoflagellates are a heterogeneous group of protists present in all aquatic ecosystems where they occupy various ecological niches. They play a major role as primary producers, but many species are mixotrophic or heterotrophic. Environmental metabarcoding based on high-throughput sequencing is increasingly applied to assess diversity and abundance of planktonic organisms, and reference databases are definitely needed to taxonomically assign the huge number of sequences. We provide an updated 18S rRNA reference database of dinoflagellates: dinoref. Sequences were downloaded from genbank and filtered based on stringent quality criteria. All sequences were taxonomically curated, classified taking into account classical morphotaxonomic studies and molecular phylogenies, and linked to a series of metadata. dinoref includes 1,671 sequences representing 149 genera and 422 species. The taxonomic assignation of 468 sequences was revised. The largest number of sequences belongs to Gonyaulacales and Suessiales that include toxic and symbiotic species. dinoref provides an opportunity to test the level of taxonomic resolution of different 18S barcode markers based on a large number of sequences and species. As an example, when only the V4 region is considered, 374 of the 422 species included in dinoref can still be unambiguously identified. Clustering the V4 sequences at 98% similarity, a threshold that is commonly applied in metabarcoding studies, resulted in a considerable underestimation of species diversity.

19.
Sci Total Environ ; 627: 373-387, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426160

ABSTRACT

A first synoptic and trans-domain overview of plankton dynamics was conducted across the aquatic sites belonging to the Italian Long-Term Ecological Research Network (LTER-Italy). Based on published studies, checked and complemented with unpublished information, we investigated phytoplankton and zooplankton annual dynamics and long-term changes across domains: from the large subalpine lakes to mountain lakes and artificial lakes, from lagoons to marine coastal ecosystems. This study permitted identifying common and unique environmental drivers and ecological functional processes controlling seasonal and long-term temporal course. The most relevant patterns of plankton seasonal succession were revealed, showing that the driving factors were nutrient availability, stratification regime, and freshwater inflow. Phytoplankton and mesozooplankton displayed a wide interannual variability at most sites. Unidirectional or linear long-term trends were rarely detected but all sites were impacted across the years by at least one, but in many case several major stressor(s): nutrient inputs, meteo-climatic variability at the local and regional scale, and direct human activities at specific sites. Different climatic and anthropic forcings frequently co-occurred, whereby the responses of plankton communities were the result of this environmental complexity. Overall, the LTER investigations are providing an unparalleled framework of knowledge to evaluate changes in the aquatic pelagic systems and management options.


Subject(s)
Ecosystem , Environmental Monitoring , Plankton/physiology , Animals , Italy , Phytoplankton , Population Dynamics , Zooplankton
20.
Sci Rep ; 7(1): 15868, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29158517

ABSTRACT

This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.


Subject(s)
Ecosystem , Phytoplankton/genetics , Life Cycle Stages/genetics , Mediterranean Sea , Phytoplankton/chemistry , Phytoplankton/metabolism , Seawater/chemistry , Species Specificity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...